The ARF is the most common reason for ICU admissions in critically ill cancer patients. The incidence of ARF ranges from 10 to 50 % in patients with hematologic or oncologic malignancies and goes as high as almost 90 % in some reports on allogeneic stem cell recipients. Furthermore, it represents one of the most important risk factors for higher morbidity and mortality, especially, if invasive mechanical ventilation (IMV) becomes necessary. In addition, several diagnostic and therapeutic considerations apply. Thus, ARF depicts the central organ dysfunction in cancer patients.
Prognostic importance of invasive mechanical ventilation
Until the 1980s, mortality rates of invasively ventilated cancer patients with ARF were up to 90 %. Over time, however, mortality rates have decreased markedly, even in cancer patients with ARF and IMV in addition to multiple organ failure and/or sepsis. A recent multicenter trial reports a mortality rate of only 52 % in hematologic patients with the most severe form of respiratory failure, the acute respiratory distress syndrome (ARDS). This exceeds mortality rates of the general ARDS population by only about 10 %. Such advances can be attributed to improved patient selection, general progress of ventilatory strategies including concomitant therapies, increased understanding of adequate diagnostic measures (see below), as well as new antimicrobial substances, most of all antimycotics.
Definitions, causes and diagnostics
The most common presentation of respiratory failure in critically ill cancer patients is hypoxic ARF (PaO2/FiO2-ratio < 200). Especially in hematologic patients, so-called respiratory events predict emerging oxygenation disturbances and imminent failure of the respiratory system: infiltrates, increased respiratory rates, cough, sputum, rales, thoracic pain, and hemoptysis are associated with increased intubation and mortality rates.
The prognosis of cancer patients is worse if the etiology of the ARF remains unclear. A labor-intensive and evidence based workup of the multiple causes is associated with a diagnostic rate of approximately 80 %. In addition to noninvasive testing, bronchoalveolar lavage can increase the rate of positive findings in up to 20 % of cases and may be safely operated even in nonintubated patients, if a peripheral oxygen saturation of > 90 % can be obtained.
Noninvasive ventilation as measure to avoid intubation?
The available literature of the past suggested the safety and efficacy of noninvasive ventilation (NIV) strategies as a measure to avoid intubation and mortality in immunocompromised patients. However, apart from some inconsistent observational trials, the evidence was based on two small and meanwhile historical randomized controlled trials (RCTs) including heterogeneous patient populations. The mortality rates in the respective control groups (O2-insufflation only) of these trials were excessive compared to recent studies. Thus, the findings of these investigations may have now lost relevancy. Moreover, several of the mentioned observational trials raised concerns that secondary intubation after NIV failure may be associated with even higher mortality rates when compared to primary IMV.
Very recently, one large prospective multicenter RCT and one large multicenter observational study with propensity score matching suggested that in specialized centers using prespecified ICU admission criteria and rigorous diagnostic testing for the etiology of ARF, the use of early NIV does not seem to be superior with regard to intubation rates and mortality when compared to O2-insufflation alone. On the other hand, both studies did not show any drawbacks associated with NIV. With regards to the RCT, it has to be stated that the mortality rate in the control group was lower than expected, so that the trial was underpowered. In addition, patient inclusion criteria seems to have been more liberal than in the historical trials. Eventually, the use of high-flow nasal cannula oxygen therapy, a novel and possibly promising therapy in patients with hypoxic ARF, was used in both arms of the study, which may itself have had an impact on the outcome.
Thus, even though the use of early NIV does not seem to be supported by recent evidence, the same data do not entirely rule out a role for NIV in certain situations. We suggest that if NIV is used in cancer patients with hypoxic ARF, close monitoring for established risk factors for NIV-failure and awareness for early break-off followed by endotracheal intubation is warranted.